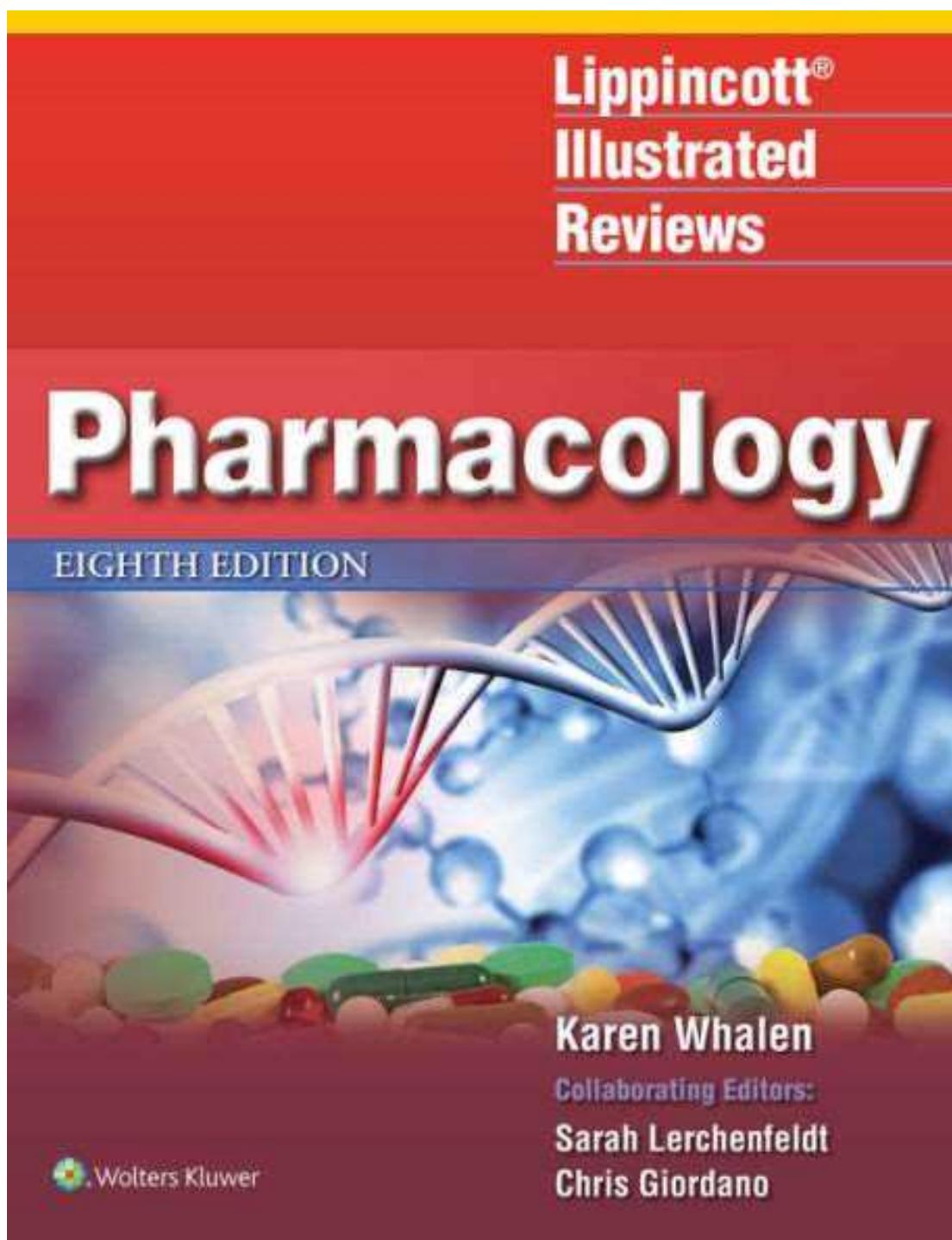


TEST BANK


Lippincott Illustrated Reviews

Pharmacology

Karen Whalen

8th Edition

Table of Contents

UNIT I: Principles of Drug Therapy

- Chapter 1: Pharmacokinetics
- Chapter 2: Drug-Receptor Interactions and Pharmacodynamics

UNIT II: Drugs Affecting the Autonomic Nervous System

- Chapter 3: The Autonomic Nervous System
- Chapter 4: Cholinergic Agonists
- Chapter 5: Cholinergic Antagonists
- Chapter 6: Adrenergic Agonists
- Chapter 7: Adrenergic Antagonists

Unit III: Drugs Affecting the Central Nervous System

- Chapter 8: Drugs for Neurodegenerative Diseases
- Chapter 9: Anxiolytic and Hypnotic Drugs
- Chapter 10: Antidepressants
- Chapter 11: Antipsychotic Drugs
- Chapter 12: Drugs for Epilepsy
- Chapter 13: Anesthetics
- Chapter 14: Opioids
- Chapter 15: Drugs of Abuse
- Chapter 16: CNS Stimulants

UNIT IV: Drugs Affecting the Cardiovascular System

- Chapter 17: Antihypertensives
- Chapter 18: Diuretics
- Chapter 19: Heart Failure
- Chapter 20: Antiarrhythmics
- Chapter 21: Antianginal Drugs
- Chapter 22: Anticoagulants and Antiplatelet Agents
- Chapter 23: Drugs for Hyperlipidemia

UNIT V: Drugs Affecting the Endocrine System

- Chapter 24: Pituitary and Thyroid
- Chapter 25: Drugs for Diabetes
- Chapter 26: Estrogens and Androgens
- Chapter 27: Adrenal Hormones
- Chapter 28: Drugs for Obesity

UNIT VI: Drugs for Other Disorders

- Chapter 29: Drugs for Disorders of the Respiratory System
- Chapter 30: Antihistamines
- Chapter 31: Gastrointestinal and Antiemetic Drugs
- Chapter 32: Drugs for Urologic Disorders
- Chapter 33: Drugs for Anemia
- Chapter 34: Drugs for Dermatologic Disorders
- Chapter 35: Drugs for Bone Disorders
- Chapter 36: Anti-inflammatory, Antipyretic, and Analgesic Agents

UNIT VII: Chemotherapeutic Drugs

- Chapter 37: Principles of Antimicrobial Therapy
- Chapter 38: Cell Wall Inhibitors
- Chapter 39: Protein Synthesis Inhibitors
- Chapter 40: Quinolones, Folic Acid Antagonists, and Urinary Tract Antiseptics
- Chapter 41: Antimycobacterial Drugs
- Chapter 42: Antifungal Drugs
- Chapter 43: Antiprotozoal Drugs
- Chapter 44: Anthelmintic Drugs
- Chapter 45: Antiviral Drugs
- Chapter 46: Anticancer Drugs
- Chapter 47: Immunosuppressants

UNIT VIII: Toxicology

- Chapter 48: Clinical Toxicology

Pharmacology Illustrated Reviews 8th Edition Whalen

Test Bank

Chapter 1: Pharmacokinetics

MULTIPLE CHOICE

1. Which drugs will go through a pharmaceutic phase after it is administered?
 - a. Intramuscular cephalosporins
 - b. Intravenous vasopressors
 - c. Oral analgesics
 - d. Subcutaneous antiglycemics

ANS: C

When drugs are administered parenterally, there is no pharmaceutic phase, which occurs when a drug becomes a solution that can cross the biologic membrane.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 3

TOP: NURSING PROCESS: Assessment

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

2. The nurse is preparing to administer an oral medication and wants to ensure a rapid drug action. Which form of the medication will the nurse administer?
 - a. Capsule
 - b. Enteric-coated pill
 - c. Liquid suspension
 - d. Tablet

ANS: C

Liquid drugs are already in solution, which is the form necessary for absorption in the GI tract. The other forms must disintegrate into small particles and then dissolve before being absorbed.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 3

TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

3. The nurse is teaching a patient who will be discharged home with a prescription for an enteric-coated tablet. Which statement by the patient indicates understanding of the teaching?

- a. I may crush the tablet and put it in applesauce to improve absorption.
- b. I should consume acidic foods to enhance absorption of this medication.
- c. I should expect a delay in onset of the drug's effects after taking the tablet.
- d. I should take this medication with high-fat foods to improve its action. CORRECT ANSWER: C

Enteric-coated tablets resist disintegration in the acidic environment of the stomach and disintegrate when they reach the small intestine. There is usually some delay in onset of actions after taking these medications. Enteric-coated tablets should not be crushed or chewed, which would alter the time and location of absorption. Acidic foods will not enhance the absorption of the medication. The patient should not eat high-fat food before ingesting an enteric-coated tablet, because high-fat foods decrease the absorption rate.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 3 TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

4. A patient who is newly diagnosed with type 1 diabetes mellitus asks why insulin must be given by subcutaneous injection instead of by mouth. The nurse will explain that this is because

- a. absorption is diminished by the first-pass effects in the liver.
- b. absorption is faster when insulin is given subcutaneously.
- c. digestive enzymes in the gastrointestinal tract prevent absorption.
- d. the oral form is less predictable with more adverse effects. CORRECT ANSWER: C

Insulin, growth hormones, and other protein-based drugs are destroyed in the small intestine by digestive enzymes and must be given parenterally. Because insulin is destroyed by digestive enzymes, it would not make it to the liver for metabolism with a first-pass effect. Subcutaneous tissue has fewer blood vessels, so absorption is slower in such tissue. Insulin is given subcutaneously because it is desirable to have it absorb slowly.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 3 TOP: NURSING PROCESS: Nursing Intervention: Patient Teaching

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

5. The nurse is preparing to administer an oral medication that is water-soluble. The nurse understands that this drug

- a. must be taken on an empty stomach.
- b. requires active transport for absorption.
- c. should be taken with fatty foods.
- d. will readily diffuse into the gastrointestinal tract. CORRECT ANSWER: B

Water-soluble drugs require a carrier enzyme or protein to pass through the GI membrane.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 4 TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

6. A nurse is preparing to administer an oral drug that is best absorbed in an acidic environment. How will the nurse give the drug?

- a. On an empty stomach
- b. With a full glass of water
- c. With food
- d. With high-fat food CORRECT ANSWER: C

Food can stimulate the production of gastric acid so medications requiring an acidic environment should be given with a meal. High-fat foods are useful for drugs that are lipid soluble.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 4 TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

7. The nurse is preparing an injectable drug and wants to administer it for rapid absorption. How will the nurse give this medication?

- a. IM into the deltoid muscle
- b. IM into the gluteal muscle
- c. SubQ into abdominal tissue
- d. SubQ into the upper arm CORRECT ANSWER: A

Drugs given IM are absorbed faster in muscles that have more blood vessels, such as the deltoid, rather than those with fewer blood vessels, such as the gluteals. Subcutaneous routes are used when absorption needs to be slower and more sustained.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 4 TOP: NURSING PROCESS: Planning

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

8. The nurse is reviewing medication information with a nursing student prior to administering an oral drug and notes that the drug has extensive first-pass effects. Which statement by the student indicates a need for further teaching about this medication?

- a. The first-pass effect means the drug may be absorbed into systemic circulation from the intestinal lumen.
- b. The first-pass effect means the drug may be changed to an inactive form and excreted.
- c. The first-pass effect means the drug may be changed to a metabolite, which may be more active than the original.
- d. The first-pass effect means the drug may be unchanged as it passes through the liver.

CORRECT ANSWER: A

Drugs that undergo first-pass metabolism are absorbed into the portal vein from the intestinal lumen and go through the liver where they are either unchanged or are metabolized to an inactive or a more active form.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 4 TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

9. The nurse prepares to change a patients medication from an intravenous to an oral form and notes that the oral form is ordered in a higher dose. The nurse understands that this is due to differences in

- a. bioavailability.
- b. pinocytosis.
- c. protein binding.
- d. tachyphylaxis.

CORRECT ANSWER: A

Oral drugs may have less bioavailability because a lower percentage of the drug reaches the systemic circulation. Pinocytosis refers to the process by which cells carry a solute across a membrane. Protein binding can occur with both routes. Tachyphylaxis describes a rapid decrease in response to drugs that occurs when tolerance develops quickly.

DIF: COGNITIVE LEVEL: Understanding (Comprehension) REF: dm 4 TOP: NURSING PROCESS: Assessment

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

10. The nurse is preparing to administer a drug and learns that it binds to protein at a rate of 90%.

The patient's serum albumin level is low. The nurse will observe the patient for

- a. decreased drug absorption.
- b. decreased drug interactions.
- c. decreased drug toxicity.
- d. increased drug effects. CORRECT ANSWER: D

Drugs that are highly protein-bound bind with albumin and other proteins, leaving less free drug in circulation. If a patient has a low albumin, the drug is not bound, and there is more free drug to cause drug effects. There would be increased absorption, increased interactions with other drugs, and increased toxicity.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 5 TOP: NURSING PROCESS: Evaluation

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

11. The nurse is administering two drugs to a patient and learns that both drugs are highly protein-bound. The nurse may expect

- a. decreased bioavailability of both drugs.
- b. decreased drug effects.
- c. decreased drug interactions.
- d. increased risk of adverse effects. CORRECT ANSWER: D

Two drugs that are highly protein-bound will compete for protein-binding sites, leaving more free drug in circulation and an increased risk of adverse effects as well as increased bioavailability, increased drug effects, and increased drug interactions.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 5 TOP: NURSING PROCESS: Evaluation

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

12. A patient has been taking a drug that has a protein-binding effect of 75%. The provider adds a new medication that has a protein-binding effect of 90%. The nurse will expect

- a. decreased drug effects of the first drug.
- b. decreased therapeutic range of the first drug.
- c. increased drug effects of the first drug.
- d. increased therapeutic range of the first drug. CORRECT ANSWER: C

Adding another highly protein-bound drug will displace the first drug from protein-binding sites and release more free drug increasing the drugs effects. This does not alter the therapeutic range, which is the serum level between drug effectiveness and toxicity.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 5 TOP: NURSING PROCESS: Nursing Intervention/Evaluation

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

13. The nurse gives a medication to a patient with a history of liver disease. The nurse will monitor this patient for

- a. decreased drug effects.
- b. increased drug effects.
- c. decreased therapeutic range.
- d. increased therapeutic range. CORRECT ANSWER: B

Liver diseases such as cirrhosis and hepatitis alter drug metabolism by inhibiting the drug- metabolizing enzymes in the liver. When the drug metabolism rate is decreased, excess drug accumulation can occur and lead to toxicity.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 6 TOP: NURSING PROCESS: Assessment/Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

14. The nurse gives 800 mg of a drug that has a half-life of 8 hours. How much drug will be left in the body in 24 hours if no additional drug is given?

- a. None
- b. 50 mg
- c. 100 mg
- d. 200 mg CORRECT ANSWER: C

Eight hours after the drug is given, there will be 400 mg left. Eight hours after that (16 hours), there will be 200 mg left. At 24 hours, there will be 100 mg left.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 6 TOP: NURSING PROCESS: Evaluation

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

15. If a drug has a half-life of 12 hours and is given twice daily starting at 0800 on a Monday, when will a steady state be achieved?

- a. 0800 on Tuesday
- b. 0800 on Wednesday
- c. 0800 on Thursday
- d. 0800 on Friday CORRECT ANSWER: B

Steady-state levels occur at 3 to 5 half-lives. Wednesday at 0800 is 4 half-lives from the original dose.

DIF: COGNITIVE LEVEL: Applying (Application) REF: Pages 6-7 TOP: NURSING PROCESS: Evaluation

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

16. The nurse is preparing to administer a drug that is ordered to be given twice daily. The nurse reviews the medication information and learns that the drug has a half-life of 24 hours. What will the nurse do next?

- a. Administer the medication as ordered.
- b. Contact the provider to discuss daily dosing.
- c. Discuss every-other-day dosing with the provider.
- d. Hold the medication and notify the provider. CORRECT ANSWER: B

A drug with a longer half-life should be given at longer intervals to avoid drug toxicity.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 12 TOP: NURSING PROCESS: Planning

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

17. The nurse is caring for a patient who has taken an overdose of aspirin several hours prior. The provider orders sodium bicarbonate to be given. The nurse understands that this drug is given for which purpose?

- a. To counter the toxic effects of the aspirin
- b. To decrease the half-life of the aspirin
- c. To increase the excretion of the aspirin
- d. To neutralize the acid of the aspirin

CORRECT ANSWER: C

Aspirin is a weak acid and is more readily excreted in alkaline urine. Sodium bicarbonate alkalizes the urine. It does not act as an antidote to aspirin, decrease the half-life, or neutralize its pH.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 7 TOP: NURSING PROCESS: Planning

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies

18. The nurse is preparing to administer a drug that is eliminated through the kidneys. The nurse reviews the patients chart and notes that the patient has increased serum creatinine and blood urea nitrogen (BUN). The nurse will perform which action?

- a. Administer the drug as ordered.
- b. Anticipate a shorter than usual half-life of the drug.
- c. Expect decreased drug effects when the drug is given.
- d. Notify the provider and discuss giving a lower dose.

CORRECT ANSWER: D

Increased creatinine and BUN indicate decreased renal function so a drug that is eliminated through the kidneys can become toxic. The nurse should discuss a lower dose with the provider. The drug will have a longer half-life and will exhibit increased effects with decreased renal function.

DIF: COGNITIVE LEVEL: Applying (Application) REF: dm 7 TOP: NURSING PROCESS: Nursing Intervention

MSC: NCLEX: Physiological Integrity: Pharmacological and Parenteral Therapies